Vitamin D-mediated induction of innate immunity in gingival epithelial cells.
نویسندگان
چکیده
Human gingival epithelial cells (GEC) produce peptides, such as β-defensins and the cathelicidin LL-37, that are both antimicrobial and that modulate the innate immune response. In myeloid and airway epithelial cells, the active form of vitamin D(3) [1,25(OH)(2)D(3)] increases the expression and antibacterial activity of LL-37. To examine the activity of vitamin D on the innate immune defense of the gingival epithelium, cultured epithelial cells were treated with either 10(-8) M 1,25(OH)(2)D(3) or ethanol for up to 24 h. A time-dependent induction of LL-37 mRNA up to 13-fold at 24 h in both standard monolayer and three-dimensional cultures was observed. Induction of the vitamin D receptor and the 1-α-hydroxylase genes was also observed. The hydroxylase was functional, as LL-37 induction was observed in response to stimulation by 25(OH)D(3). Through microarray analysis of other innate immune genes, CD14 expression increased 4-fold, and triggering receptor expressed on myeloid cells-1 (TREM-1) was upregulated 16-fold after 24 h of treatment with 1,25(OH)(2)D(3). TREM-1 is a pivotal amplifier of the innate immune response in macrophages, leading to increased production by inflammatory response genes. Activation of TREM-1 on the GEC led to an increase in interleukin-8 (IL-8) mRNA levels. Incubation of three-dimensional cultures with 1,25(OH)(2)D(3) led to an increase in antibacterial activity against the periodontal pathogen Aggregatibacter actinomycetemcomitans when the bacteria were added to the apical surface. This study is the first to demonstrate the effect of vitamin D on antibacterial defense of oral epithelial cells, suggesting that vitamin D(3) could be utilized to enhance the innate immune defense in the oral cavity.
منابع مشابه
Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense.
The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper, we show that primary lung epithelial cells express high baseline levels of activating 1alpha-hydrox...
متن کاملToll-like receptor triggering of a vitamin D-mediated human antimicrobial response.
In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to in...
متن کاملMechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D.
Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of...
متن کاملNormal Human Gingival Epithelial Cells Sense C. parapsilosis by Toll-Like Receptors and Module Its Pathogenesis through Antimicrobial Peptides and Proinflammatory Cytokines
This study was designed to investigate the interaction between C. parapsilosis and human epithelial cells using monolayer cultures and an engineered human oral mucosa (EHOM). C. parapsilosis was able to adhere to gingival epithelial cells and to adopt the hyphal form in the presence of serum. Interestingly, when cultured onto the engineered human oral mucosa (EHOM), C. parapsilosis formed small...
متن کاملDifferential activation of human gingival epithelial cells and monocytes by Porphyromonas gingivalis fimbriae.
Humans develop periodontitis in response to challenge by microbial dental plaque. Inflammation begins after perturbation of gingival epithelial cells by subgingival bacteria interacting through pattern-recognition receptors, including the Toll-like receptors (TLR). Porphyromonas gingivalis is a major periodontopathogen that interacts with epithelial cells through its cell surface fimbriae (FimA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2011